
Inl. J. Solids Structures Vol. 30, No. 16, pp. 2163-2175, 1993
Printed in Great Britain

0020-7683/93 $6.00 + .00
© 1993 Pergamon Press Ltd

THE STRESS INTENSITY FACTOR OF A
SUBSURFACE INCLINED CRACK SUBJECTED TO

DYNAMIC IMPACT LOADING

CHWAN-HUEI TSAI
Department of Mechanical Engineering, Huafan Institute of Technology, Taipei Hsien,

Taiwan 223, Republic of China

and

CHIEN-CHING MA
Department of Mechanical Engineering, National Taiwan University, No. I Roosevelt Rd.,

Sec. 4, Taipei, Taiwan 10764, Republic of China

(Received 8 November 1992; in revised/arm 3 March 1993)

Abstract-To gain insight into the phenomenon of the interaction of stress waves with a material
defect, the transient problem of a half-space containing a subsurface inclined semi-infinite crack
subjected to normal impact on the boundary of the half-space is studied. The solutions are deter
mined by linear superposition of the fundamental solution in the Laplace transform domain. The
fundamental solution is the exponentially distributed traction on crack faces proposed by Tsai and
Ma (1992, J. Appl, Mech. 59, 804--811). Due to the nature of the crack geometry, a combination
of transient mixed mode I and II deformation fields is induced near the crack tip. The exact closed
form solutions of stress intensity factor histories are obtained. These solutions are valid for the time
interval from initial loading until the first wave scattered at the crack tip returns to the crack tip
after being reflected by the free boundary. The probable crack propagation direction is predicted
from different fracture criteria,

I. INTRODUCTION

The difficulty in determining the transient stress field in a crack-elastic body subjected to
dynamic loading is well known. The investigation of an idealized semi-infinite crack can
provide some information for a realistic elastodynamic fracture problem. It is noted that
while the analysis has been carried out assuming a semi-infinite crack, the results remain
valid for a finite crack up until the time at which waves diffracted from the far tip reach
the tip near the boundary. The incident wave generated by the normal impact on the half
space will be reflected from the crack surfaces and diffracted by the crack tip. The stress
intensity factors vary rapidly at the instant a wave front passes through the crack tip. The
value of the peak is often greater than the corresponding static value and might induce
brittle fracture. The failure of a notched beam due to impact, called the dynamic tear test,
was studied by Brock et al. (1985). They investigated the case in which the crack is normal
to the half-plane surface and the point load is applied to the surface directly above the
crack tip.

In conventional studies of a semi-infinite crack in an unbounded medium subjected to
dynamic loading, the complete solution is obtained by integral transform methods together
with direct application of the Wiener-Hopftechnique (Noble, 1958) and the Cagniard-de
Hoop method (de Hoop, 1958) of Laplace inversion. If the loading is replaced by a
nonuniform distribution having a characteristic length, then the same procedure using
integral transformation methods does not apply. Freund (1974) studied the problem of an
elastic solid containing a half-plane crack subjected to concentrated impact loading on the
faces of the crack. He proposed a fundamental solution arising from an edge dislocation
climbing along the positive x I axis with a constant speed to overcome the difficulties of the
case with characteristic length. The solution can be constructed by taking an integration
over a climbing dislocation of different velocity. Basing their procedures on this method,
Brock (1982, 1984), Brock et al. (1985) and Ma and Hou (1990, 1991) analysed a series
of problems of a semi-infinite crack subjected to impact loading. Recently, Lee and Freund
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(1990) analysed fracture initiation of an edge cracked plate subjected to an asymmetric
impact.

The problem to be considered in this study is the plane strain response of an elastic
half-plane, with an inclined crack extending from infinity to the half-plane surface, subjected
to a dynamic impact loading on its surface. Particular attention is given to the elastic field
near the crack tip, which is completely characterized by the stress intensity factor. This
problem involves a characteristic length which makes a direct solution by standard tech
niques difficult. Furthermore, none of the methods proposed by Freund (1974) and Brock
et al. (1985) work for this problem. Therefore, some other approach must be followed. A
new fundamental solution proposed by Tsai and Ma (1992) is used to overcome these diffi
culties. This alternative fundamental solution is successfully applied to solve the problem and
will be demonstrated to be an efficient methodology. The final formulations are expressed
explicitly and the dynamic effect of each wave is presented in a closed form. The results are
valid before the first wave scatttered from crack tip returns to the crack tip after being
reflected by the free boundary. By setting time frames properly, we drop the interaction of
the crack surface and the half space. The half space effects on loadings are still included.
The investigation of the dynamic tear test by Brock et al. (1985) will be a special case of
the general formulation in this study. A realistic impact loading, with a rise time, effecting
a uniform distributed traction on the half-plane surface is also analysed in present work.
Finally, two fracture criteria, those of maximum circumferential tensile stress proposed by
Erdogan and Sih (1963) and minimum strain energy density proposed by Sih (1972), are
used to determine the possible direction of crack propagation.

2. FUNDAMENTAL SOLUTIONS

As usual in problems of the type considered here, superposition of solutions plays a
significant role. The solutions to the problems considered in this study can be determined
by superposition of the following problems A and B. Problem A treats the dynamic force
acting on the same semi-infinite half-plane without a crack, inducing a traction on the
planes that will eventually define the initial crack faces. In problem B, an infinite body
containing a semi-infinite crack is considered in which the faces are subjected to tractions
which are equal and opposite to those on the corresponding planes in problem A. The sum
of the solutions to problems A and B is the solution to the problem of diffraction of incident
waves by a stationary inclined crack.

From physical considerations, reflected and diffracted fields are generated to eliminate
the stress induced by incident waves on the traction-free boundaries of crack faces. For
most of the dynamic problems, the incident waves can be represented in an exponential
functional form in the Laplace transform domain of time. Unlike usual superposition
methods which are performed in the time domain, the superposition scheme proposed in
this study is performed in the Laplace transform domain. This methodology allows us to
solve more general and difficult problems.

Consider plane strain deformation of a semi-infinite crack contained in an unbounded
medium. An exponentially distributed traction in the Laplace transform domain is applied
to the crack faces. The traction force can be divided into a normal force (mode I) and a
tangential force (mode II). Because of the symmetry with respect to the plane X2 = 0, the
problem can be viewed as a half-plane problem with the material occupying the region
X2 ~ 0, subject to the boundary conditions

U22(XI>0'P) = ePdx
, , -00 < Xl ~ 0,

U12(XI> O,p) = 0, - 00 < Xl < 00,

for mode I and

°~ Xl < 00 (1)
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0'22(X., O,p) = 0, - 00 < XI < 00,

0'12(XI,0,P) = ePdx
, , - 00 < XI ::;; 0,
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(2)

for mode II, where p is the Laplace transform parameter and d is a constant. The overbar
symbol is used to denote the transform on time t. The final results of the dynamic mode I
and mode II stress intensity factors in the Laplace transform domain are

(3)

where

F (a+d) 1/2 F (b+d) 1/2
K 1 (d) = (c+d)S+ (d)' KlI(d) = (c+d)S+ (d)'

_ (~(b -1 [4A2(A2-a2)1/2(b2_A2)1/2J~)
S+(d) - exp n Ja tan (b2_2A2)2 A+d '

a = Jp/(y + 2/1), b =~, a, band c are the slownesses of the longitudinal wave, shear
wave and Rayleigh wave, /1 and p and shear modulus and mass density, and y the Lame
elastic constant.

3. SUBSURFACE CRACK DUE TO SURFACE IMPACT

The investigation of a subsurface crack subjected to dynamic loading is an important
topic in material failure analysis. The failure of a notched beam induced by impact loading
is often used to study the dynamic fracture of material. In the time period during which
waves generated by the impact force and its diffractions at the notch end have not returned
to the crack tip, the problem for the determination of the dynamic stress intensity factor
can be treated as a semi-infinite crack contained in an unbounded medium. The problem
considered here is an inclined semi-infinite crack located under the surface of a half-plane
as shown in Fig. l(a). The origins of the two coordinate systems (Xj,X2) and (XI,X2) are

----,.::--~------=:~--....,...'--_:>r-....,,--- x,

Fig. I(a). Configuration, coordinate system and wave fronts of a subsurface crack subjected to
concentrated impact loading.

Fig. I (b). Wave fronts of a subsurface crack subjected to uniformly distributed impact loading.
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located at the plane surface and crack tip, respectively. The planar crack lies in the plane
X2 = 0, XI < 0 and the inclined angle of the crack is O. The coordinate transforms and stress
relations between these two systems are

XI = XI cos O+X2 sin 0,

X2 = -XI sin O+X2 cos 0+ h,

0"22 = O"n sin2 O+O"n cos2 0+0"12 sin 20,

0" 12 = hO"n - O"n) sin 20 + 0"12 cos 20,

(4)

(5)

where h is the vertical distance from the crack tip to the plane surface.
A concentrated point impact loading of Heaviside function H(t) time dependence is

applied at the position XI = I at time t = O. The corresponding stress intensity factor
histories are determined exactly by linear superposition of the two readily obtainable stress
wave propagation solutions. One is Lamb's problem (1904) of an applied point loading on
the surface with no crack. The other problem is a semi-infinite crack in an unbounded
medium whose surfaces are subjected to the negatives of stresses induced on the region that
would be occupied by the crack in Lamb's problem. But only the latter part will induce the
singular stress in the crack tip. The stress intensity factor histories obtained in this study
are valid for the time interval from initial loading to the return of the first wave scattered
at the crack tip to the crack tip after reflection from the plane surface. The solutions to
Lamb's problem in Laplace transform form are

a (x x p) = _1_ rA (A)e- P·'<2+P,l(X,-I)+A (A)e-PPX2+P).(X,-1) dA (6)
22 I, 2, 2rci JB I 2 ,

a (x x p) =_1_ rA (A)e- P,x2+p).(X,-I)+A (A)e-Ppx2+P)'('<'-/)dA (7)
12 b 2, 2rci JB 3 4 ,

where B is the usual inversion path for the two-sided Laplace transform from AI -ioo to
AI +ioo, and AI is a real number located in the interval IAII < a. The functions in (6) and
(7) are

(8)

The stresses in the crack surfaces induced by the incident waves of Lamb's problem
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can be obtained from (6) and (7) by taking the coordinate transform and letting X2 = 0, so
that

(j = _1_ [ A (A) eP(.lcos6+.sinO)x,-p.h-pAi +A (A) eP(.lcosO+psinO)x,-pPh-pAi dA (9)
22 2ni JB I 2 ,

It is shown that tractions in crack surfaces are represented by the exponential functions
eP(.lcosO+.sinO)x, and eP(.lcos6+PsinO)x,. Since the stress intensity factors resulting from applied
tractions epdx , are expressed in (3), the solution of this problem can be constructed by
superposition of the fundamental solution obtained in the previous section. Replacing d
with Acos B+a sin Band l cos B+ fJ sin B and combining (3), (9) and (10), the results for
the mixed mode dynamic stress intensity factors in the Laplace transform domain can be
expressed as

K( = ~ [A(l)Ki(ACosB+asinB)e-pah-PY/
v 2pni JB

+ A 2 ().)Ki (l cos B+ fJ sin B) e-pPh-pAi dl, (11)

KII = ~ [A3(A)(K~l cos B+a sin B) e-poh-pAi
V 2pni JB

+ A4(A)K~ (A. cos B+ fJ sin B) e-pPh-pAi dA.. (12)

Finally, the mixed mode stress intensity factors in the time domain can be obtained by
employing Cagniard's method:

where
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2 2 2 1ro = 1 +h, COS 00 =-,
ro

. 0 h
SIn 0 = -,

ro

sgn (I) = 1, 1> 0,

=-1,1<0. (15)

The three terms in (13) and (14) represent the contribution of the primary wave (P wave),
head wave (H wave), and shear wave (8 wave), respectively. The H wave only exists in the
region Icos 00 1 > a/b. Times equal to aro, THo and bro represent arrival times of wave fronts
of P, Hand 8

J
waves, respectively. In the region cos 0* > alb, the branch point

A2 = -a cos 0- b2 _a2 sin 0 in the second term of (13) and (14) is embraced in the
integral path. It represents the reflected head wave from the crack surface generated by
the incident S wave, the corresponding arrival time of this wave front is
ro(a cos 0*+Jb2-a2 sin 0*). The definition of 0* is given in Fig. l(a). Ifloading is applied
at the right-hand side of the crack tip, the incident P, Hand S waves reach the crack tip
first and diffracted and reflected waves will be generated later. But if the loading is applied
at the left-hand side, the incident P, H, and S waves reach the crack surface first, reflected
waves from the crack surfaces arrive at the crack tip, and diffraction from the crack tip
occurs.

Consider a more realistic impact loading for a uniformly distributed normal force from
Xt = 1to l' with time dependence H(t) as shown in Fig. 1(b). The stress intensity factors of
this distributed loading can be obtained by taking integration of (II) and (12) in the Laplace
transform domain:

K1 = 1 f!At(A)Ki(Acoso+asinO)(e-POh-PM-e-poh-p)J')
j2nip 3/2 A

+ ~ A 2(A)Ki (A. cos 0+ (3 sin O)(e-pPh-pM _e-PPh-PAI') dA., (16)

Ku = 1 f! A3(A)K~(Acos O+a sin O)(e-POh-PAI_e-poh-PAI')
j2nip3/2 A.

+ ~ A4(A.)K~ (A cos 0+ (3 sin O)(e-pPh-pM _e-PPh-PAI') dA.. (17)

To complete the solution, we must evaluate the integrals and invert the resulting expressions
to the time domain. We shall accomplish this task by employing the Cagniard-de Hoop
method. The contribution of pole at A. = 0 must be considered when deforming the integral
path. If 1and l' are less (or greater) than zero simultaneously, the Cauchy residual integral
will be canceled out. So, the contribution of this pole only exists in the case of 1< 0 and
l' > O. Because the values A 2(0) and A 4 (0) are zero, the contribution of the pole of shear
wave will vanish, and only the longitudinal wave exists. The final results for stress intensity
factors in the time domain are
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1, r:--= [ 1 F . OA,6J
- br, Y t - r 1m A,6 A 2(A,6)K1 (A,6 COS () + f3 sm () a; dr

+nJ(t-ah)A \(O)Ki(a sin ()H(t-ah),

1, r:--= [ 1 . OA,6J
- br,yt-dm A,6A4(A,6)KfI(A,6Cos()+f3sm()a; dr

+nJ(t-ah)A 3(0)KfI(a sin ()H(t-ah),

where
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(18)

(19)

I'
cos ()l = -,

r\

. () hsin j =-,
rl

sgn (l') = 1, I' > 0,

=-1,1'<0. (20)

The last term of both (18) and (19) represents the effect of the straight plane wave emitted
from the surface I to 1'. The resulting wave pattern for the uniformly distributed impact
loading is shown in Fig. 1(b). The last terms in both (18) and (19) are due to the downward
plane wave while the remaining six integrals are related to the two edge effects of the loading
interval on the surface. Equations (18) and (19) are valid only if the crack tip is under the
loaded region. The respective arrival times of the wave fronts are aro, THo and bro for the
P, Hand S waves in the left-hand side, and arl' TH , and brj for the same waves in the right
hand side. Finally, ah is the arrival time of the straight P wave. The head wave exists only
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in the regions Icos 80 1 > alb and Icos 8J! > alb, while the straight P wave occurs in the
infinite strip from I to r.

In realistic impact loading conditions, it is impossible to produce a true loading of
Heaviside function time dependence. Instead, the loading pulse has a finite rise time.
Therefore, to simulate the practical impact event, the analysis is extended to a case where
the loading pulse has a finite rise time. Suppose that at time t = 0, the pulse is applied
suddenly and the magnitude of the pressure increases according to the function f(t) as

t
f(t) = T

R

= I

for

for (21)

where TR is the rise time. Then, the stress intensity factors can be obtained by the super
position method

I r'df(r)
KI,II(t) = Jo~ KI,II(t-r) dr, (22)

where K(,ll (t) are the stress intensity factors for a unit step stress wave loading profile as
presented in (18) and (19).

Practical structures are not only subjected to tension but also to shear loading. In
mixed mode experiments, it is usually observed that crack extension takes place at an angle
with respect to the original crack. When the mixed stress intensity factors have been
obtained, the criteria of maximum circumferential tensile stress proposed by Erdogan and
Sih (1963) and minimum strain energy density proposed by Sih (1972) will be introduced
to examine the crack growth direction. The maximum circumferential tensile stress criterion
postulates that the crack will grow in a direction determined by the condition that when
the circumferential tensile stress within the asymptotic field is at a maximum, the angle 82

(= 8 - 8c) between the crack line and the direction of crack growth satisfies

(23)

The strain energy density criterion states that crack growth takes place in the direction of
minimum strain energy density. The relation for determining 82, the angle of crack exten
sion, is then given by

(1- 2v)( - 2 sin 82K? -4 cos 82K(Kll +2 sin 82K(n

+ (sin 28 2K? +4 cos 282K(Kll - 3 sin 282KfI) = O. (24)

4. NUMERICAL RESULTS

In the previous sections, the exact elastodynamic stress intensity factor history has
been determined. For numerical calculation of the mixed dynamic stress intensity factors,
Poisson's ratio v is assumed to be equal to 0.25. In this case, the ratios of the slownesses
are b = J3a and c = 1.88a. The point impact loadings of Heaviside function H(t) time
dependence are applied at the positions I = - 2h, 0 and 2h. The inclined angles 8 of crack
are 0°, 45° and 90°. There are nine combinations of loading position and inclined crack
angle. The dynamic stress intensity factors for the time interval of interest are shown in
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Figs 2--4. The crack propagation angle 8c that satisfies (23) and (24) for the problem
analysed here is shown in Figs 5 and 6.

We consider first the case of an applied loading at the left (right)-hand side of the
crack tip which makes 1= -2h (l = 2h). As indicated previously, the results obtained in this
study are valid for the time period in which waves generated at the impact point and its dif
fractions from the notch end have not yet returned to the crack tip, that is .J5::;;
t/ah ::;; .J5+2. There are incident P, Hand S waves from the applied loading point on the
semi-infinite surface. The normalized arrival times t/ah of incident wave fronts at the
crack tip are .J5 for the P wave, 2+J2 for the H wave, and jl5 for the S wave. The
exact stress intensity factors are given in Figs 2 and 3. For the case of l/h = -2 and 8 = 0°
as shown in Fig. 2, although the reflected wave generated from the crack surface begin to
reach the crack tip at time t/ah = Jl3 = 3.6 after being reflected from the half space free
boundary, the stress intensity factor evaluated for this case does not account for the
contribution of this reflected wave from the free boundary. The histories of stress intensity
factors have a finite jump at P and S wave fronts. It is shown that the arrival of the
longitudinal wave instantaneously places the crack edge is compression. For 8 = 0, Figs 2
and 3 show that the crack tip stress field changes from compression to tension, and the
tension field grows subsequently prior to the shear wave arrival. If 8 is equal to 45° or 900

,

the transient field near the crack tip is in compression during the whole time interval of
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interest. If loading is applied at I = 0, the case in which a normal point force is applied
directly above the crack tip, only P and S waves pass through the crack tip. As shown in
Fig. 4, a finite value is found at the longitudinal wave front but no jump occurs at the shear
wave front. The valid time interval in this case is 1 ~ tJah ~ 3. The normalized arrival times
are 1 for the P wave and J3 for the S wave. If () = 90°, the crack is perpendicular to the
half-plane surface, we have the case studied by Brock et al. (1985). We can see from Figs
2-4 that if one wants to design an impact loading system which will result in a positive
mode I stress intensity factor, the most suitable arrangement will be to put the crack parallel
to the free surface and to have the dynamic impact loading applied at the free boundary at
the position above the crack surface, as indicated in Fig. 2 for the case of () = 0°.

Without considering the feasibility when the compression state is generated in the near
tip, the crack propagation angle (}c predicted by maximum circumferential tensile stress and
minimum strain energy density criteria for the problem analysed here is shown in Figs 5
and 6. It can be concluded from these two figures that the most dangerous case will be one
of a loading applied directly above the crack tip (i.e. I = 0) because, in this case, the crack
propagation angle (}c is always greater than zero, meaning that the crack will propagate
toward the half-plane surface.

In order to simulate a realistic situation with practical applications, we consider the
uniformly distributed impact loading shown in Fig. l(b). There are three kinds of loading
position to be investigated numerically. They are a distributed loading applied at the left
hand side of the crack tip (l = -2h, l' = -h), a distributed loading applied symmetrically
with respect to the crack tip (l = -0.5h, l' = 0.5h), and a distributed loading applied at
the right-hand side of the crack tip (l = h, l' = 2h). The orientation of the crack can be
parallel or perpendicular to the half-plane surface. The time dependent loading impulse has
a finite rise time as indicated in (21). A normalized rise time TR equal to 0.5ah is chosen
for the numerical study. The dynamic stress intensity factors have been evaluated numeri
cally and are shown in Figs 7 and 8. The result shows a continuation of the stress intensity
factor at the wave front, which differs from the case of an applied point loading with
Heaviside function time dependence discussed previously. The maximum circumferential
tensile stress criterion is used for prediction of the crack propagation direction for the
distributed loading condition the result of which is shown in Fig. 9. It is noted that if the
distributed loading is applied directly above the crack tip, the crack will propagate toward
the half-plane surface. For a horizontal crack subjected to a distributed loading located on
the right-hand side of the crack tip, the crack will also tend to propagate toward the half
plane surface.

5. CONCLUSIONS

In this study, an exponentially distributed loading on the crack surfaces in the Laplace
transform domain is considered as the fundamental solution. The incident waves from
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the impact loading diffracted by the crack tip can be constructed by superimposing the
fundamental solution. This new methodology is shown to be both powerful and efficient in
solving more complex and difficult problems.

In the previous sections, a subsurface inclined crack subjected to impact loading on a
half-plane surface is investigated. The net result of this loading will induce a mixed mode
field at the crack tip. Exact mixed mode I and II stress intensity factors are obtained in an
explicit form. The exact solution to this configuration can provide a valuable check for pure
numerical methods such as the finite element, finite difference or boundary element methods
in solving more complex geometries.

The maximum circumferential tensile stress and minimum strain energy criteria are
used to predict the direction of crack propagation. It is found in this study that the crack
will extrude out of the half-plane surface if the impact loading is applied in the region above
the crack tip.
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